

Therapeutic Use of Mechanical Ventilation: Can We Change the Way We Manage the Patient?

2014 Suncoast Pulmonary Symposium Hyatt Regency Coconut Point Resort Bonita Springs, Florida September 10-12, 2014

Gary F. Nieman

Associate Professor Department of Surgery Director, Cardiopulmonary and Critical Care Laboratory SUNY Upstate Medical University

> Syracuse, NY Niemang@upstate.edu

Why is it Important to Prevent ARDS?

- Once established ARDS is very difficult to treat
 - Almost all clinical trials a failure (MacIntyre & Brower)
 - Low Vt only reduced ARDS moderately (ARDSnet)
 - Mortality of ARDS still 30-60% (Shari & Herridge)
 - Mortality is higher than Breast Cancer (Rubenfeld)
 - Even with Low Vt mortality still >40% (Villar ALIEN Study)
- Patients that develop established-ARDS often develop chronic lung and brain injury

Thirty years of clinical trials in acute respiratory distress syndrome

Robert C. McIntyre Jr, MD; Edward J. Pulido, MD; Denis D. Bensard, MD; Brian D. Shames, MD; Edward Abraham, MD, FCCM

(Crit Care Med 2000; 28:3314-3331)

Established-ARDS: Difficult to Treat

<u>Table 2:</u> ARDS Treatments, Evidence & Recommendations Systematically Reviewed	Adapted from Ware et. al [1] and Cepovka et al [2]	
Treatment Modality	Evidence Level	Recommendation Grade
Ventilatory		
-Low Tidal Volume	1&2	В
-Open Lung	2	В
-Inverse Ratio	3&4	D
-Liquid Ventilation	4	E
Extracorporeal Life Support	Level 1 & 2 Against	Not Recommended
Prone Positioning	3	D
Restrictive Fluid Management	2	С
	3	С
ADDC. 1/		
ARDS: 14 =		
	Level 1 Against	Not Recommended
-Almitrine	3	С
-Prostacvclin	3	С
	1	
The Good Guy	VS:	
	ainst	Not Recommended
-Ketoconazole	Level 1 Against	Not Recommended
-Ibuprofen	Level 2 Mixed Results	Not Recommended At Any Level
-Corticosteroid	2	С
Ouch. ^{/steine}	Level 2 Mixed Results	Not Recommended At Any Level

JPSTATE MEDICAL UNIVERSITY Established-ARDS: Difficult to Treat

TABLE 1. SELECTED RANDOMIZED CONTROLLED CLINICAL TRIALS IN ACUTE LUNG INJURY AND THE ACUTE RESPIRATORY DISTRESS SYNDROME*

	Year	No. Patients	Intervention	Clinical Outcome Result*
Surfactant trials				
Weg (27)	1994	51	Exosurf—aerosolized	NSD
Anzueto (11)	1005	725	Exosurf—aerosolized	NSD
Gregory (14)	1997	59	Bovine surfactant—endotracheal instillation	NSD
Spragg (13)	2004	448	Protein C surfactant—endotracheal instillation	NSD
Kesecioglu (12)	2009	418	HL 10 surfactant—endotracheal instillation	NSD
Spragg (1)	2011	843	Protein C surfactant—endotracheal instillation	NSD
Other trials				
Zapol (18)	1979	90	ECMO	NSD
Amato (2)	1998	53	Lower tidal volume + higher PEEP	otective approach better
Stewart (28) [†]	1998	120	Lower tidal volume/inspiratory pressure	NSD
Brochard (29)	1998	116	Lower tidal volume/plateau pressure	NSD
Brower (30)	1999	52	Lower tidal volume/plateau pressure	NSD
Abraham (17)	1999	350	Prostaglandin E1	NSD
ARDS Network/Steinberg (31)	2000	234	Ketoconazole	NSD
ARDS Network/Brower (3)	2000	861	Lower tidal volume/plateau pressure	dal volume better
Gattinoni (32)	2001	304	Prone position	NSD
ARDS Network/Abraham (19)	2002	235	Lisofylline	NSD
Derdak (33)	2002	148	High frequency oscillatory ventilation	NSD
Taylor (16)	2004	385	Inhaled nitric oxide	NSD
ARDS Network/Brower (34)	2004	549	Higher PEEP	NSD
Kacmarek (35)	2006	311	Partial Liquid Ventilation	NSD
Mancebo (36)	2006	136	Prone positioning	NSD
ARDS Network/Steinberg (37)	2006	180	Methylprednisolone for persistent ARDS	NSD
ARDS Network/Wiedemann (38)	2006	1000	Fluid-conservative hemodynamic strategy	N SD [‡]
ARDS Network/Wheeler (39)	2006	1000	Pulmonary artery vs central venous catheter	NSD
Villar (4)	2006	95	Lower tidal volume + higher PEEP	Lung-protective approach better
Meduri (8)	2007	91	Methylprednisolone for early ARDS	Mathubarednisolone better
Mercat (40)	2008	767	Higher PEEP	NSD
Meade (41)	2008	983	Higher PEEP	NSD
Taccone (42)	2009	342	Prone positioning	NSD
Peek (9)	LUIS	180	Transfer to ECMO-capable center	Transfer better
Papazian (10)	2010	340	Neuromuscular blockade	Neuromuscular blockade better

Definition of abbreviations: ALI = acute long injury; ARDS = acute respiratory distress syndrome; ECMO = extracorporeal membrane oxygenation; NSD = not significantly different PEEP = positive end-expiratory pressure.

Included trials enrolled at least 50 patients. Some trials with more than 50 patients were not included because they were pilot studies for subsequent trials.

* Results of primary outcome variable analysis.

[†] Patients at risk for ALI.

* Ventilator-free days (secondary outcome variable) was significantly greater in the fluid-conservative group.

Brower RG, Am J Resp Crit Care Med, 2011

Recently Failed Trials

Randomized, Placebo-controlled Clinical Trial of an Aerosolized β_2 -Agonist for Treatment of Acute

Lung Injury The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network

Am J Respir Crit Care Med Vol 184. pp 561–568, 2011

AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Preclinical studies and one clinical trial suggested that β_2 -agonist therapy could reduce pulmonary edema in acute lung injury. However, the potential value of aerosolized β_2 -agonist therapy for treatment of acute lung injury has not been tested previously in a phase III, randomized clinical trial.

What This Study Adds to the Field

The results of this randomized double-blind clinical trial demonstrate that aerosolized β_2 -agonist therapy with albuterol did not improve clinical outcomes in patients with acute lung injury.

Recently Failed Trials Recombinant Surfactant Protein C-based Surfactant for Patients with Severe Direct Lung Injury

Roger G. Spragg^{1*}, Friedemann J. H. Taut^{2*}, James F. Lewis³, Peter Schenk⁴, Clemens Ruppert⁵, Nathan Dean⁶, Kenneth Krell⁷, Andreas Karabinis⁸, and Andreas Günther⁵ Am J Respir Crit Care Med Vol 183. pp 1055–1061, 2011

AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Prior studies have suggested that treatment with exogenous surfactant of patients with severe direct lung injury may be beneficial.

What This Study Adds to the Field

In this prospective, blinded, randomized study of 843 patients, delivery of a recombinant surfactant protein C-based surfactant provided no benefit to patients with severe direct lung injury.

Recently Failed Trials

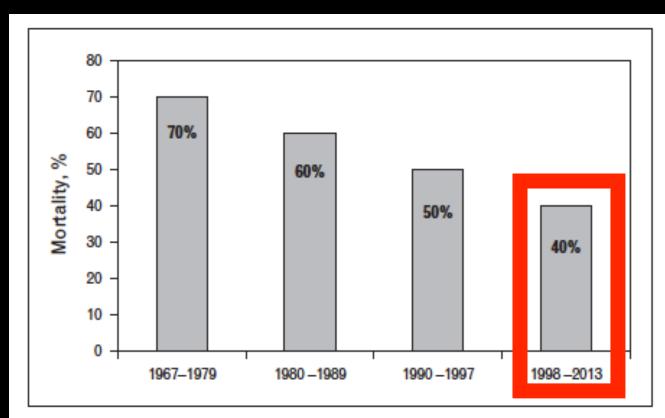
The NEW ENGLAND JOURNAL of MEDICINE

2013

ORIGINAL ARTICLE

High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome

Niall D. Ferguson, M.D., Deborah J. Cook, M.D., Gordon H. Guyatt, M.D.,


CONCLUSIONS

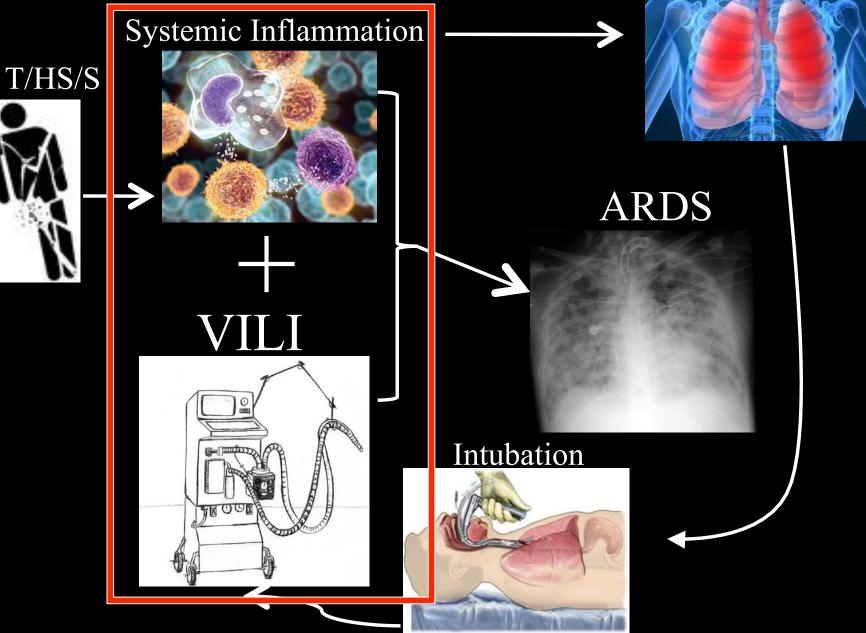
In adults with moderate-to-severe ARDS, early application of HFOV, as compared with a ventilation strategy of low tidal volume and high positive end-expiratory pressure, does not reduce, and may increase, in-hospital mortality. (Funded by the Canadian

Villar J, Curr Opin Crit Care 2014;20:3-9

UPSTATE MEDICAL UNIVERSITY

No Reduction in ARDS Mortality since 1998

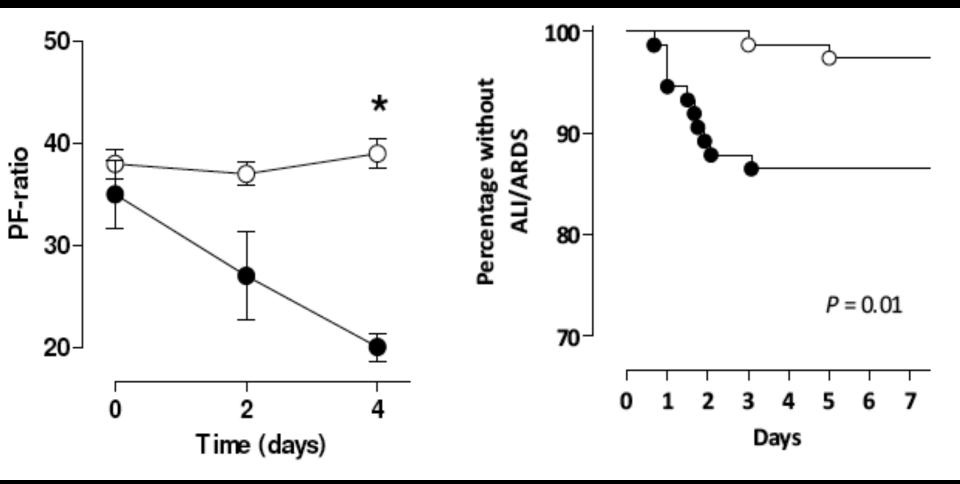
FIGURE 1. Schematic representation of average reported mortality in observational and randomized controlled trials in adult patients with acute respiratory distress syndrome since 1967. Data have been compiled from [6^{••},11,12[•],26,27[•]].


- What is the role of mechanical ventilation in the development of *Established-ARDS*?
- Is there a 'treatment window' in the hospital during which ARDS can be treated?
- What is the progressive pulmonary pathophysiology as *EALI* evolves into *Established-ARDS* ?
- What kind of mechanical breath is necessary to prevent ARDS?

- What is the role of mechanical ventilation in the development of *Established-ARDS*?
- Is there a 'treatment window' in the hospital during which ARDS can be treated?
- What is the progressive pulmonary pathophysiology as *EALI* evolves into *Established-ARDS* ?
- What kind of mechanical breath is necessary to prevent ARDS?

Early Lung Inflammation

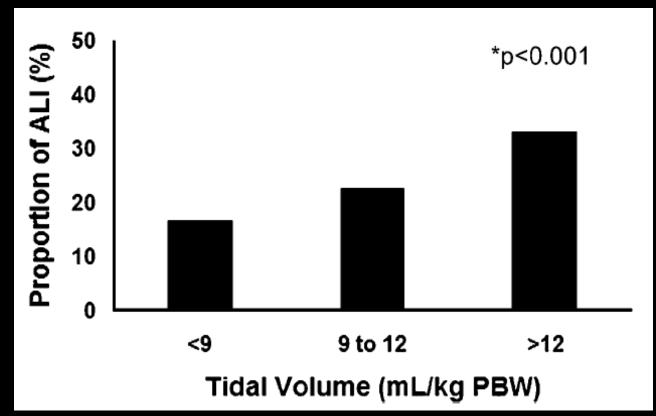
Is acute respiratory distress syndrome an iatrogenic disease?


Jesús Villar^{1,2,3} and Arthur S Slutsky*3,4,5

Critical Care 2010, 14:120

- "...should we begin to consider that ALI/ARDS is a consequence of our efforts rather than progression of the underlying disease?"
- "..injurious ventilation strategies have been shown to cause all of the pathology associated with ALI/ARDS."
- "...ALI/ARDS is largely a 'man-made' syndrome."
- "..ALI/ARDS is no longer a syndrome that must be treated, but is a syndrome that should be prevented."

Improper Ventilation in 'Normal' Lungs Drives ARDS.



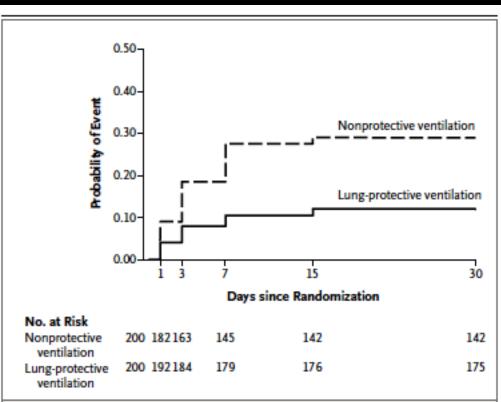
Ventilator-associated lung injury in patients <u>without acute lung</u> injury at the onset of mechanical ventilation*

Ognjen Gajic, MD; Saqib I. Dara, MD; Jose L. Mendez, MD; Adebola O. Adesanya, MD; Emir Festic, MD; Sean M. Caples, MD; Rimki Rana, MD; Jennifer L. St. Sauver, PhD; James F. Lymp, PhD; Bekele Afessa, MD; Rolf D. Hubmayr, MD Crit Care Med 2004

Patients in the ICU without ALI placed on multiple Vt's

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


A Trial of Intraoperative Low-Tidal-Volume Ventilation in Abdominal Surgery

Emmanuel Futier, M.D., Jean-Michel Constantin, M.D., Ph.D., Catherine Paugam-Burtz, M.D., Ph.D., Julien Pascal, M.D., Mathilde Eurin, M.D., Arthur Neuschwander, M.D., Emmanuel Marret, M.D., Marc Beaussier, M.D., Ph.D., Christophe Gutton, M.D., Jean-Yves Lefrant, M.D., Ph.D., Bernard Allaouchiche, M.D., Ph.D., Daniel Verzilli, M.D., Marc Leone, M.D., Ph.D., Audrey De Jong, M.D., Jean-Etienne Bazin, M.D., Ph.D., Bruno Pereira, Ph.D., and Samir Jaber, M.D., Ph.D., for the IMPROVE Study Group*

N ENGL J MED 369;5 NEJM.ORG AUGUST 1, 2013

Non-protective Ventilation = Vt 10-12cc/kg 0 PEEP Lung-protective Ventilation = Vt 6-8cc/kg, 6-8 PEEP + RM

Reduced Major Complications

Figure 2. Kaplan–Meier Estimates of the Probability of the Composite Primary Outcome.

Data for the Kaplan–Meier estimates of the probability of the composite primary outcome of major pulmonary or extrapulmonary complications were censored at 30 days after surgery. Major pulmonary complications included pneumonia or the need for invasive or noninvasive ventilation for acute respiratory failure. Major extrapulmonary complications were sepsis, severe sepsis, septic shock, and death. P<0.001 by the log-rank test for the between-group difference in the probability of the primary outcome.

Fuller et al. Critical Care 2013, 17:R11 http://ccforum.com/content/17/1/R11

RESEARCH

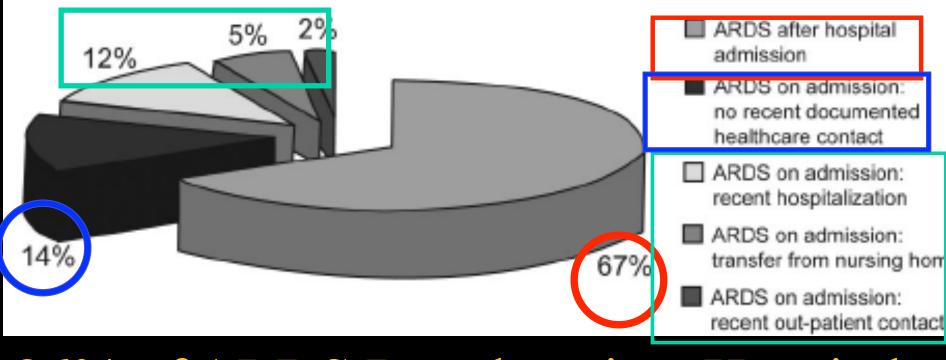
Open Access

Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: a systematic review

Brian M Fuller^{1*}, Nicholas M Mohr², Anne M Drewry³ and Christopher R Carpenter⁴

- Key Messages
 - Higher Vt are causal in the development of ARDS
 - ARDS occurs early in the course of mechanical ventilation suggesting that ARDS-prevention trials should occur early, such as in the emergency department
 - The development of ARDS is associated with significant increases in mortality and morbidity, suggesting that ARDS-prevention trials are needed

- What is the role of mechanical ventilation in the development of *Established-ARDS*?
- Conclusion: MV plays a major role in ARDS pathogenesis
- Is there a 'treatment window' in the hospital during which ARDS can be treated?
- What is the progressive pulmonary pathophysiology as *EALI* evolves into *Established-ARDS* ?
- What are the key pathologic components that comprise pre-ARDS pathophysiology?


- What is the role of mechanical ventilation in the development of *Established-ARDS*?
- Conclusion: MV plays a major role in ARDS pathogenesis
- Is there a 'treatment window' in the hospital during which ARDS can be treated?
- What is the progressive pulmonary pathophysiology as *EALI* evolves into *Established-ARDS* ?
- What kind of mechanical breath is necessary to prevent ARDS?

Timing of the Onset of Acute Respiratory Distress Syndrome: A Population-Based Study

Giath Shari MD, Marija Kojicic MD, Guangxi Li MD, Rodrigo Cartin-Ceba MD, Cesar Trillo Alvarez MD, Rahul Kashyap MBBS, Yue Dong MD, Jaise T Poulose MBBS, Vitaly Herasevich MD, Javier A Cabello Garza MD, and Ognjen Gajic MD

Respir Care 2011;56(5):576–582.

86% of ARDS Develops in a Hospital

- What is the role of mechanical ventilation in the development of *Established-ARDS*?
- Is there a 'treatment window' in the hospital during which ARDS can be treated?
 - Most ARDS develops in the hospital so there is an opportunity to prevent
- What is the progressive pulmonary pathophysiology as *EALI* evolves into *Established-ARDS* ?
- What are the key pathologic components that comprise pre-ARDS pathophysiology?

- What is the role of mechanical ventilation in the development of *Established-ARDS*?
- Is there a 'treatment window' in the hospital during which ARDS can be treated?
 - Most ARDS develops in the hospital so there is an opportunity to prevent
- What is the progressive pulmonary pathophysiology as *EALI* evolves into *Established-ARDS* ?
- What are the key pathologic components that comprise pre-ARDS pathophysiology?

CRITICAL CARE MEDICINE

Identification of Early Acute Lung Injury at Initial Evaluation in an Acute Care Setting Prior to the Onset of Respiratory Failure*

Joseph E. Levitt, MD, MS; Harmeet Bedi, MD; Carolyn S. Calfee, MD; Michael K. Gould, MD, MS, FCCP; and Michael A. Matthay, MD

(CHEST 2009; 135:936-943)

Early Acute Lung Injury (EALI): *Before* the patient is placed on MV

Early Acute Lung Injury (EALI) Criteria

• Admission with Bilateral infiltrates on CXR

• Initial O₂ requirement of >2L/min

- Strong predictor of patient progressing to ALI
 - -73% sensitivity
 - -79% specificity

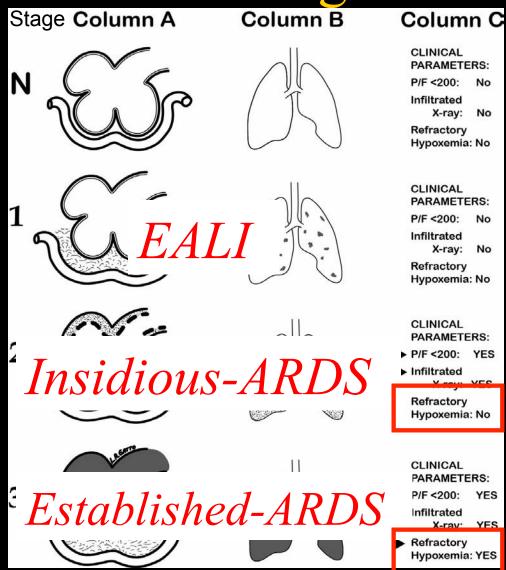
ARDS Staging

• Once the patient progresses from EALI to ALI and is placed on mechanical ventilation the lung progresses through an additional 3-Stages of progressively increasing pathology

Acute Respiratory Distress Syndrome The Berlin Definition

The ARDS Definition Task Force* JAMA. 2012;307(23):2526-2533 Published online May 21, 2012. doi:10.1001/jama.2012.5669

Degrees of ARDS


 <u>Mild ARDS</u>: P/F≤300 with PEEP≥5

-<u>Moderate ARDS</u>: P/F≤200 with PEEP≥5

-<u>Severe ARDS</u>: $P/F \le 100$ with PEEP ≥ 5

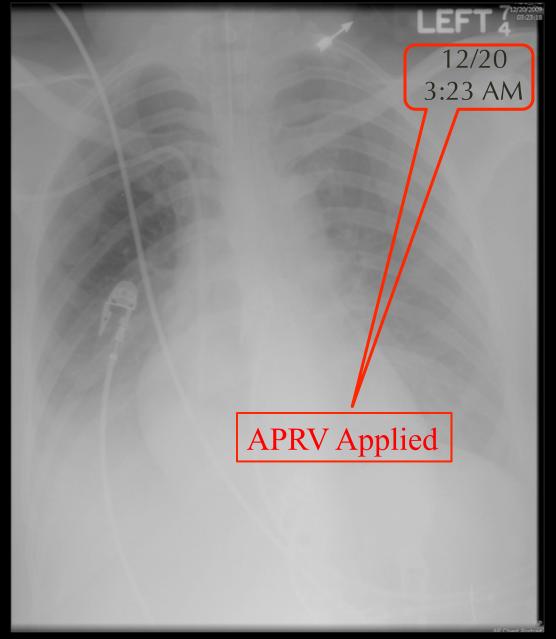
ARDS Pathogenesis

MEDICAL UNIVERSITY

Roy et al J Trauma Acute Care Surg. 2012,73: 391

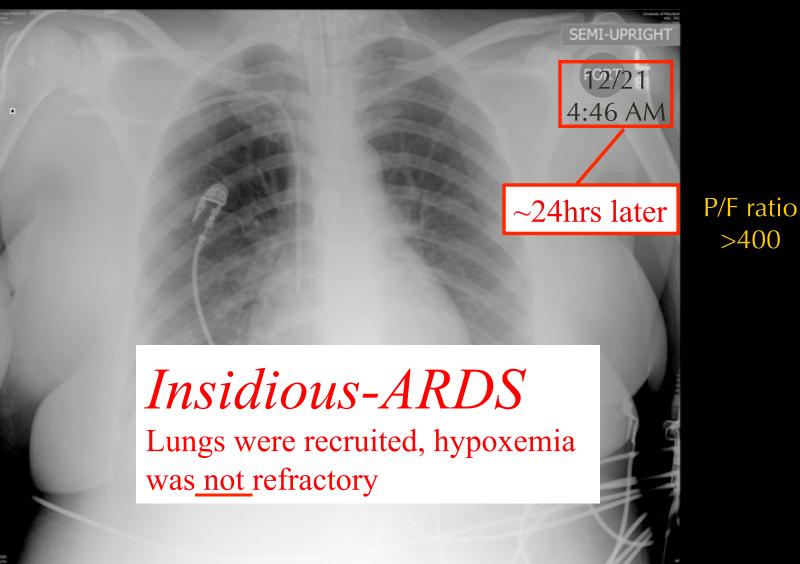
What is *Insidious-ARDS* and is there proof that it exists?

Insidious-ARDS is an early stage of ARDS that is treatable and presents with the identical clinical *symptoms as does Established-ARDS, however, with a maneuver such as a FiO₂-PEEP Trial oxygenation dramatically improves and the patient no longer meets AECC defined ARDS*



ntensive Care Med (2004) 30:1111–1116 OI 10.1007/s00134-004-2163-2	ORIGINAL
Viall D. Ferguson Robert M. Kacmarek ean-Daniel Chiche effrey M. Singh David C. Hallett angeeta Mehta Thomas E. Stewart	Screening of ARDS patients using standardized ventilator settings: influence on enrollment in a clinical trial

- <u>Observation</u>: Patients with AECC defined ARDS have a P/F <200 *regardless of ventilator settings*
- <u>Intervention</u>: Screening these patients with standardized ventilator settings would identify *Persistent-ARDS*
 - Vt 7-8 ml/kg
 - PEEP 10 cmH_2O
 - FiO₂ 100%
- <u>Results</u>: *Persistent-ARDS* 42%; *Transient-ARDS* 59%
- <u>Conclusion</u>: This study supports the concept of a slow progressive pathogenesis for ARDS and suggests that preemptive application with the correct *Mechanical Breath* may be able to block disease progression


Insidious-ARDS

P/F ratio <200

Insidious-ARDS

- Unlike pregnancy ARDS is not binary but rather a disease with a progressive, insidious onset, similar to cancer
- *Insidious-ARDS* presents with identical symptoms as does *Established-ARDS*
- However, if the proper Mechanical Breath is applied to the lung with *Insidious-ARDS* the lung will reopen, edema will be reduced and oxygenation will return and disease progression may be halted

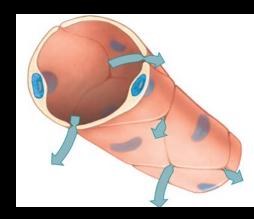
- What is the role of mechanical ventilation in the development of *Established-ARDS*?
- Is there a 'treatment window' in the hospital during which ARDS can be treated?
- What is the progressive pulmonary pathophysiology as *EALI* evolves into *Established-ARDS* ?
 - EALI and Insidious-ARDS are progressive stages leading to Established-ARDS.
- What kind of mechanical breath is necessary to prevent ARDS?

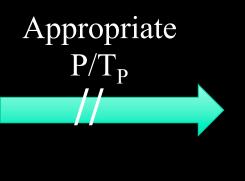
- What is the role of mechanical ventilation in the development of *Established-ARDS*?
- Is there a 'treatment window' in the hospital during which ARDS can be treated?
- What is the progressive pulmonary pathophysiology as *EALI* evolves into *Established-ARDS* ?
 - EALI and Insidious-ARDS are progressive stages leading to Established-ARDS.
- What kind of mechanical breath is necessary to prevent ARDS?

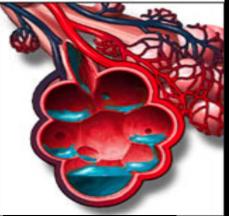
Before we can determine the components of the mechanical breath that may prevent the pathogenesis of ARDS we must know:

• The key pathologic components that drive progressive acute lung injury into ARDS

• Is the disease process propagated by a mechanical or inflammatory injury or both?

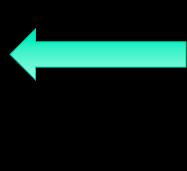


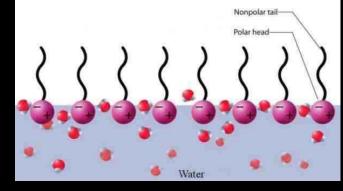

Before we can determine the components of the mechanical breath that may prevent the pathogenesis of ARDS we must know:


• The key pathologic components that drive progressive acute lung injury into ARDS

• Is the disease process propagated by a mechanical or inflammatory injury or both?

UPSTATE Pathologic Tetrad of ARDS



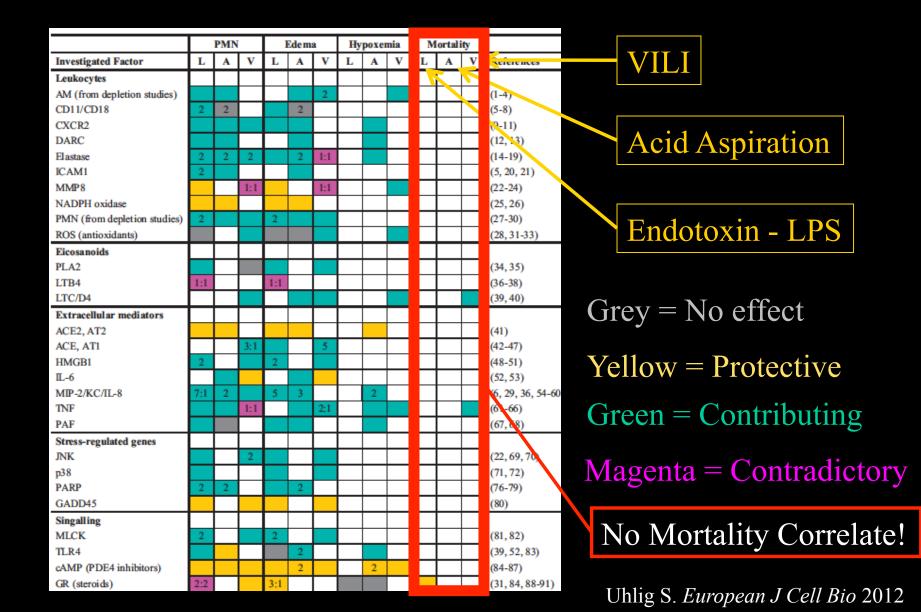


Increased Capillary Permeability

Alveolar Edema

Alveolar Instability

Surfactant Deactivation



Before we can determine the components of the mechanical breath that may prevent the pathogenesis of ARDS we must know:

• The key pathologic components that drive progressive acute lung injury into ARDS

• Is the disease process propagated by a mechanical or inflammatory injury or both?

UPSTATE MEDICAL UNIVERSITY ALI Models and Inflammatory Mediators

Mechanical Injury During Ventilation

Stress/Strain

Lung Stress and Strain During Mechanical Ventilation: Any Difference Between Statics and Dynamics?

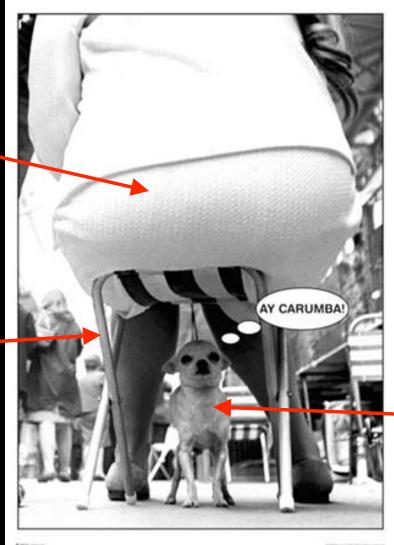
Alessandro Protti, MD¹; Davide T. Andreis, MD¹; Massimo Monti, MD¹; Alessandro Santini, MD¹; Cristina C. Sparacino, MD¹; Thomas Langer, MD¹; Emiliano Votta, PhD²; Stefano Gatti, MD³; Luciano Lombardi, RT⁴; Orazio Leopardi, MD¹; Serge Masson, PhD⁵; Massimo Cressoni, MD¹; Luciano Gattinoni, MD FRCP^{1,6}.

Critical Care Medicine

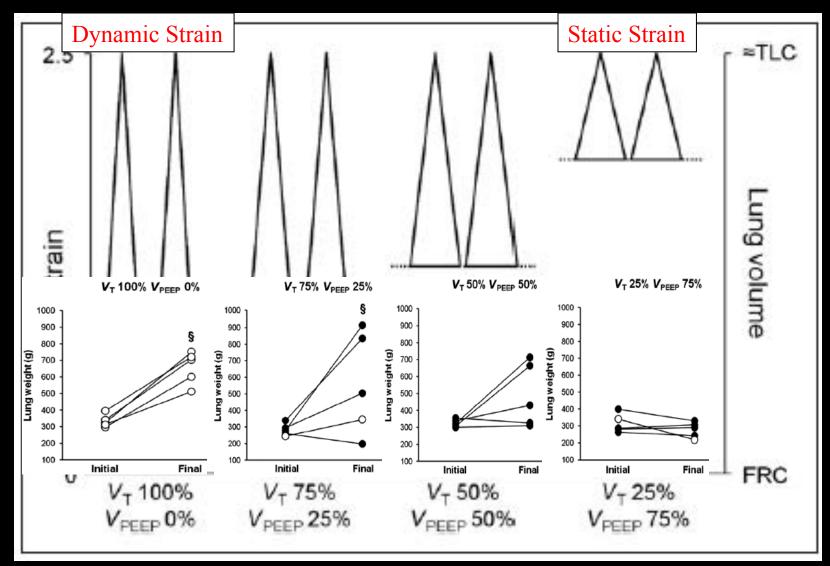
January 2013 • Volume 41 • Number 2

What is Stress/Stain Injury, Really?

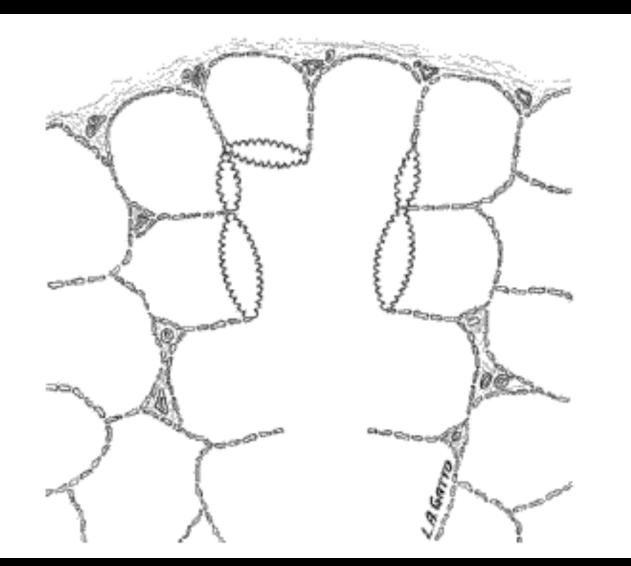
- Mechanical Stress
 - High airway pressure/shear stress (Volu- Atelectrauma)
- Exceeding the limits of the support structure


 Alveolar and bronchiole walls
- Causing serious damage
 VILI

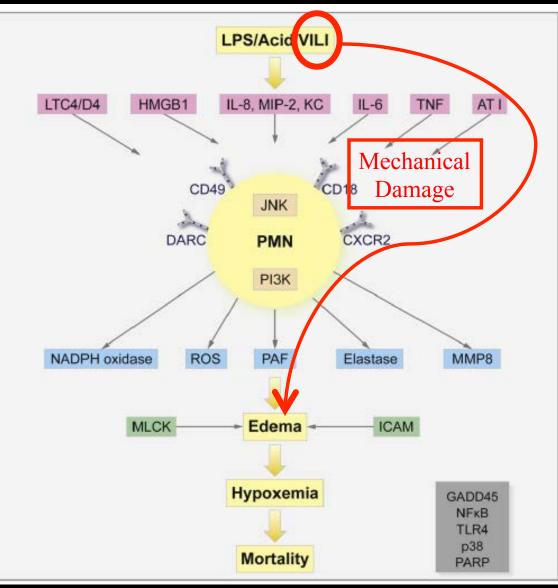
Mechanism of VILI


Mechanical Stress

Serious Injury


Study Protocol

Protti et al Crit Care Med 2013



Shear Stress-Induced Alveolar Injury

Direct Injury by VILI

MEDICAL UNIVERSITY

Uhlig S. European J Cell Bio 2012

- The 4 key pathologic components in ARDS pathogenesis are:
 - Increased capillary permeability
 - Surfactant deactivation
 - Alveolar edema
 - Alveolar instability (alveolar R/D)
- Mechanical damage caused by non-protective mechanical ventilation drives the progression of acute lung injury

If mechanical ventilation is a primary driving force in progressive acute lung injury, how in the world can we use mechanical ventilation to prevent acute lung injury?

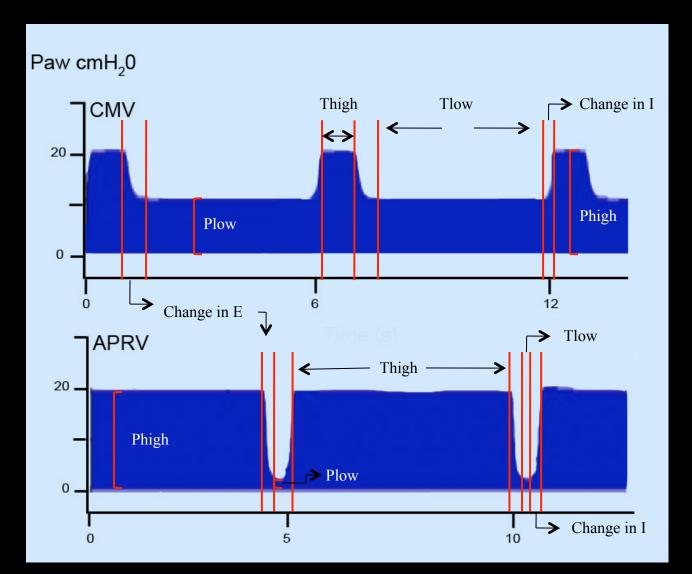
Take an Entirely New Approach

- Deconstruct the mechanical breath
 - Analyze all 10 components of the mechanical breath (pressures, flows, rates, volumes, *Times*)
 - Mechanical Breath Profile (MB_P)

• Determine the impact of any given MB_P on the Micro-environment – the alveoli and alveolar ducts

Take an Entirely New Approach

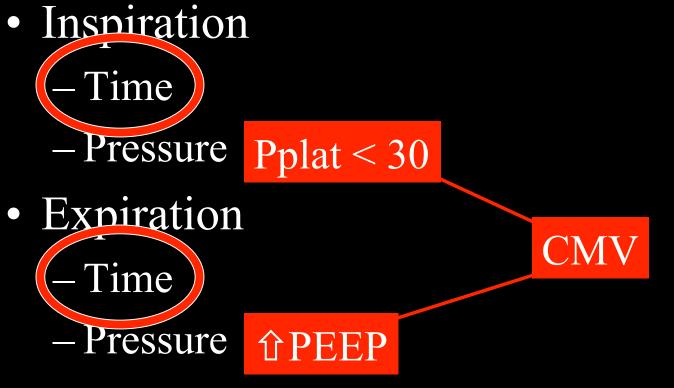
- Deconstruct the mechanical breath
 - Analyze all 10 components of the mechanical breath (pressures, flows, rates, volumes, *Times*)
 - Mechanical Breath Profile (MB_P)


• Determine the impact of any given MB_P on the Micro-environment – the alveoli and alveolar ducts

Whole Breath Deconstruction

- Time at Inspiration (T_I)
- Pressure at Inspiration (P_I)
- Time at Expiration (T_E)
- Pressure at Expiration (P_E)
- Transition Time from P_E to P_I (Inspiration rate ΔP_I)
- Transition Time from P_I to P_E (Expiration rate ΔP_E)
- Respiratory Rate
- Tidal Volume
- Inspiratory Flow
- Expiratory Flow
- FRC
- TLC

UPSTATE Whole Breath Deconstruction



First Step in Whole Breath Analysis

Identify the role of *Time* on lung protection Pressure/Time Profile: P/T_P

Components Comprising the P/T_P

• RATE of change between Inspiration and Expiration

Components Comprising the P/T_{P}

- Inspiration
 - -Time l _{High} – Pressure P_{High} APRV
- Expiration
 - -Time
 - Pressure
- T_{Low}

- PLow
- RATE of change between Inspiration and Expiration

We used the APRV mode in our experiments due to the ease of setting the <u>Time</u> of pressure application throughout the mechanical breath

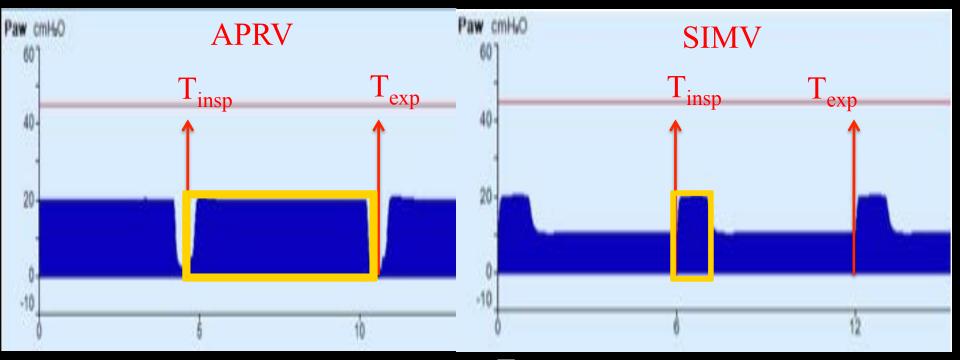
Ventilator as a Therapeutic Tool to Prevent ARDS

- Maintain a fully inflated homogeneously ventilated lung

 APRV extended *time* at inspiration (T_{High}) continually recruits
- Prevent alveolar collapse during expiration

 APRV very short *time* a expiration (T_{Low}) prevents collapse

Ventilator as a Therapeutic Tool to Prevent ARDS


- Maintain a fully inflated homogeneously ventilated lung

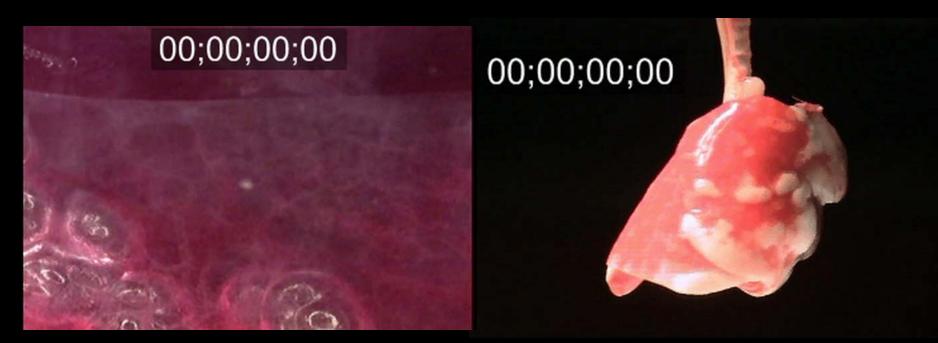
 APRV extended *time* at inspiration (T_{High}) continually recruits
- Prevent alveolar collapse during expiration

 APRV very short *time* a expiration (T_{Low}) prevents collapse

<u>The Pressure Time Profile (P/T_P)</u> describes the airway pressure profile of the <u>*Entire Breath*</u> over the time period of one respiratory cycle. P/T_P is the area under the airway pressure curve.

 $\frac{P}{T_{P}} = \int_{T_{insp}}^{T_{exp}} P dT$

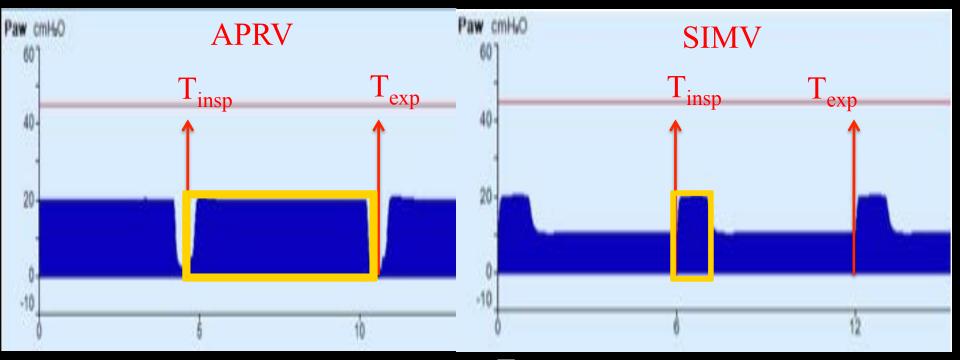
Roy et al J Trauma Acute Care Surg. 2012,73: 391


Two Basic Components of P/T_P

•Pressure

•Time

The Effects of Pressure and Time



$\begin{array}{l} Pressure = 40 \text{ cm } H_2O \\ Time = 40 \text{ seconds} \end{array}$

Albert SP et al J Appl Physiol, 2009

<u>The Pressure Time Profile (P/T_P)</u> describes the airway pressure profile of the <u>*Entire Breath*</u> over the time period of one respiratory cycle. P/T_P is the area under the airway pressure curve.

 $\frac{P}{T_{P}} = \int_{T_{insp}}^{T_{exp}} P dT$

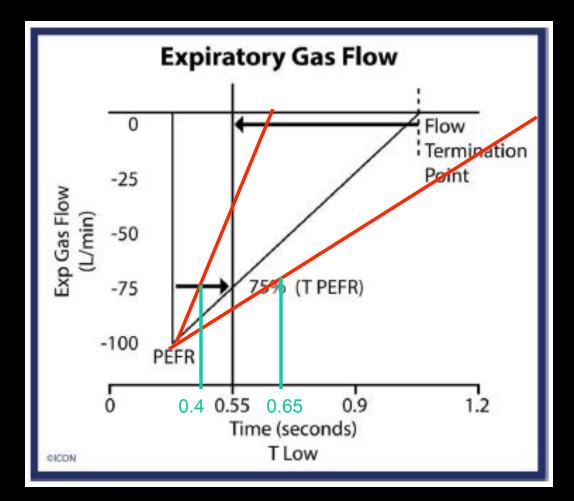
Roy et al J Trauma Acute Care Surg. 2012,73: 391

Ventilator as a Therapeutic Tool to Prevent ARDS

- Maintain a fully inflated homogeneously ventilated lung

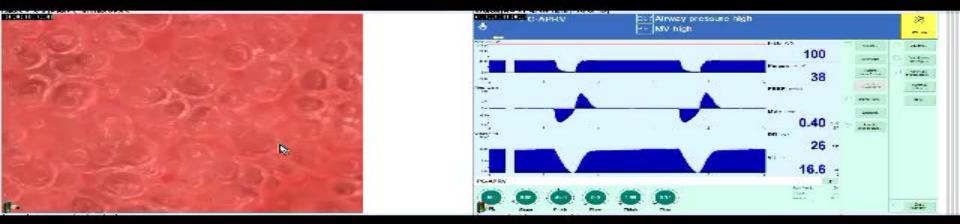
 APRV extended *time* at inspiration (T_{High}) continually recruits
- Prevent alveolar collapse during expiration

 APRV very short *time* a expiration (T_{Low}) prevents collapse

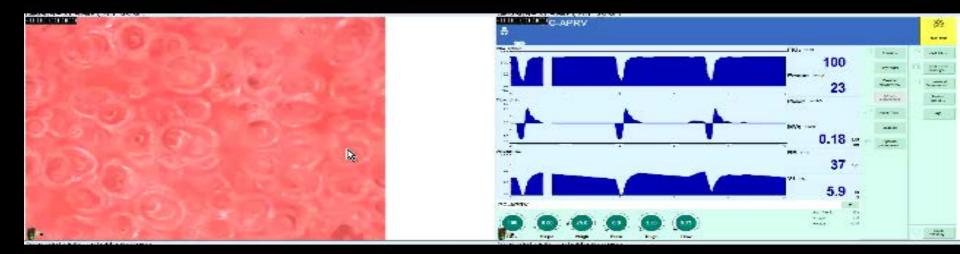

Ventilator as a Therapeutic Tool to Prevent ARDS

- Maintain a fully inflated homogeneously ventilated lung

 APRV extended *time* at inspiration (T_{High}) continually recruits
- Prevent alveolar collapse during expiration


 APRV very short *time* a expiration (T_{Low}) prevents collapse

T_{Low} Set by a Physiologic Closed Loop Feedback System



Tlow set incorrectly at 10% of Peak Expiratory Flow Rate

Tlow set correctly at 75% of Peak Expiratory Flow Rate

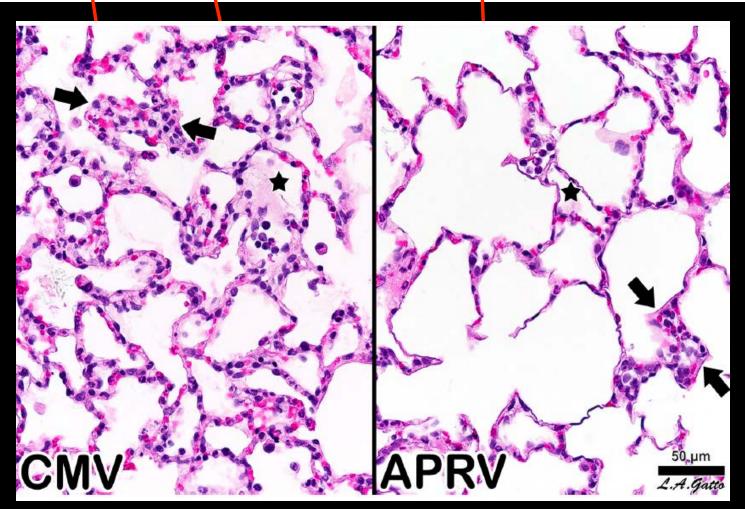
Ventilator as a Therapeutic Tool to Prevent ARDS

- Maintain a fully inflated homogeneously ventilated lung

 APRV extended *time* at inspiration (T_{High}) continually recruits
- Prevent alveolar collapse during expiration
 APRV very short *time* a expiration (T_{Low}) prevents collapse

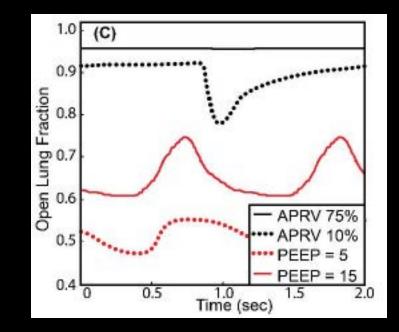
Current Studies in our Lab

Mechanical Breath Profile (MB_P)



Whole Breath Analysis

- Time at Inspiration (T_I)
- Pressure at Inspiration (P_I)
- Time at Expiration (T_E)
- Pressure at Expiration (P_E)
- Transition Time from P_E to P_I (Inspiration rate ΔP_I)
- Transition Time from P_I to P_E (Expiration rate ΔP_E)
- Respiratory Rate
- Tidal Volume
- Inspiratory Flow
- Expiratory Flow
- FRC
- TLC


UPSTATE MEDICAL UNIVERSITY

МВр	Time at Insp	Time at Exp	ΔT _E	Press at Insp	Tidal Vol	Q _E
Rho	0.8178	-0.8234	-0.8321	-0.8419	0.1 APRV	-0.8763
p value	0.0468	0.0440	0.0398	0.0355	0.0490	0.0220

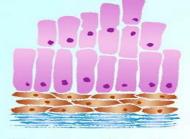
Smith B et al BMES, Abstract, 2014

Physiologically-based Computational Model

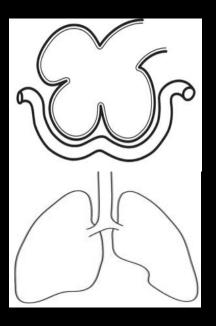
- Short time at low pressure with APRV-75% doses not allow time for derecruitment
- Long time at high pressure with APRV-75% improves lung recruitment
- Thus, APRV-75% opens the lung for homogeneous ventilation and prevents alveolar collapse and instability

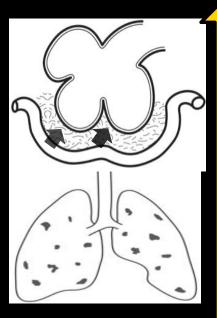
Conclusion

- Multiple components in the Mechanical breath including:
 - Time a peak inspiration (very long)
 - Time at end expiration (very short)
 - Pressure at inspiration (low)
 - Tidal volume (high)


Preemptive ventilation to prevent ARDS: Studies from our Lab

Rationale for Prevention


Normal Colon




Hyperproliferative epithelium

Adenoma Carcinoma 1-www.pathologyoutlines.com/topic/colontumoradenomacarcinoma.html

Preemptive Intervention

Present Intervention

SHOCK, Vol. 39, No. 1, pp. 28-38, 2013

EARLY AIRWAY PRESSURE RELEASE VENTILATION PREVENTS ARDS—A NOVEL PREVENTIVE APPROACH TO LUNG INJURY

Shreyas Roy,* Nader Habashi,[†] Benjamin Sadowitz,* Penny Andrews,[†] Lin Ge,* Guirong Wang,* Preyas Roy,[‡] Auyon Ghosh,* Michael Kuhn,[§] Joshua Satalin,* Louis A. Gatto,^{II} Xin Lin,¹ David A. Dean,¹ Yoram Vodovotz,** and Gary Nieman*

Our Model: '2-Hit' Peritoneal Sepsis +I/R Induced ARDS

Experimental Design: Surgical Instrumentation

2-Hit Injury

<u>APRV</u> (n=4)

- $P_{high} = P_{plat}$
- $P_{low} = 0$
- $T_{low} PEFR = 75\%$
- $T_{high} = > 90\% \text{ CPAP}$
- Vt = 12 nL/kg

Roy et al Shock 2013;39: 28

 $\underline{\text{Sham}}$ (n=5)

- PEEP = 5
- Vt = 10 mL/kg
- No Sepsis+I/R

ARDSnet (n=3)

- High PEEP Scale
- Vt = 6 mL/kg
 - Applied post \checkmark O₂

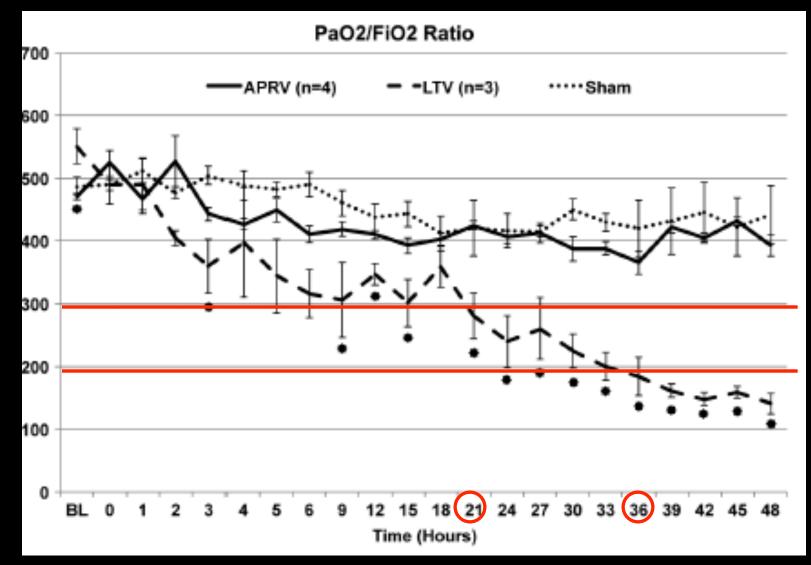
Broad Spectrum Antibiotics

ullet

Early Goal Directed Therapy Based Fluid Resuscitation and Vasopressors

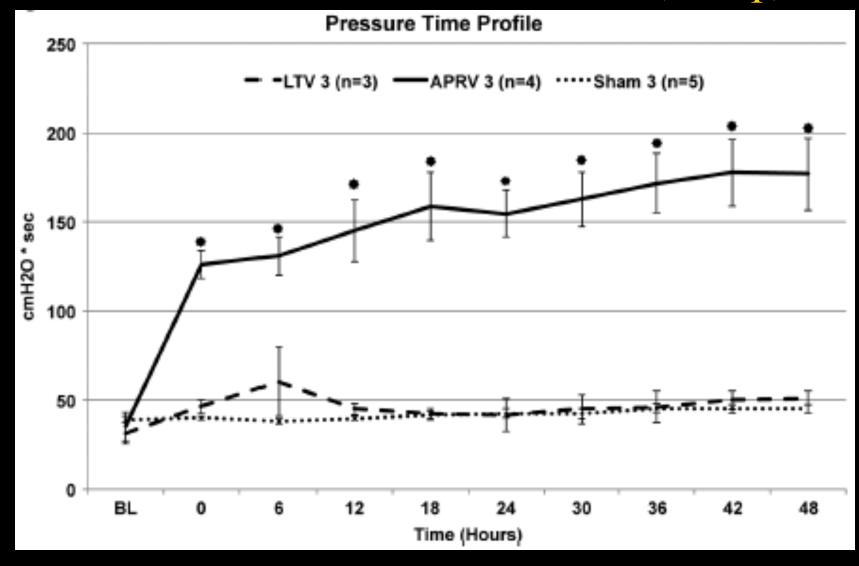
All Animals Continuously Monitored according to ICU Standards of Care

Results

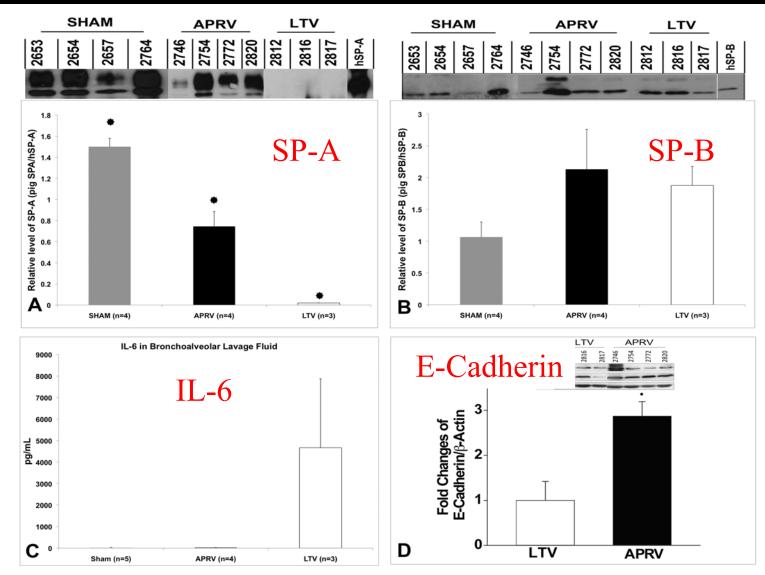

- All Pigs Developed Septic Shock
 - Fever, Leukopenia
 - Hemodynamic
 Compromise
 - Positive Blood
 Cultures
 - E Coli, Pseudomonas, Streptococci, Klebsiella pneumoniae

- All Pigs Developed Complications of Shock:
- Abdominal Compartment Syndrome
- Gastric Stress Ulcers
- Sepsis Associated Coagulopathy
- Oliguric Renal Failure

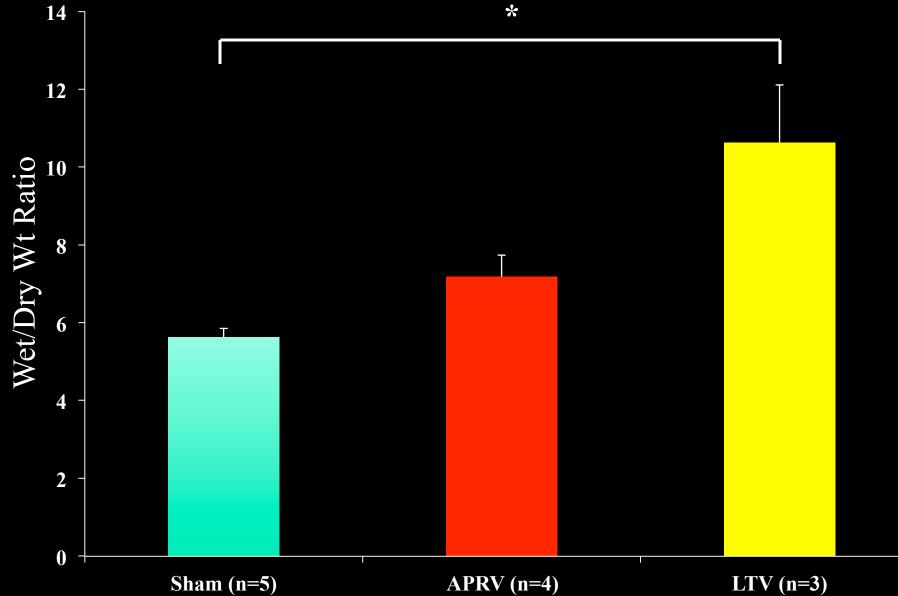
SOFA scores & plasma IL-6 were not different



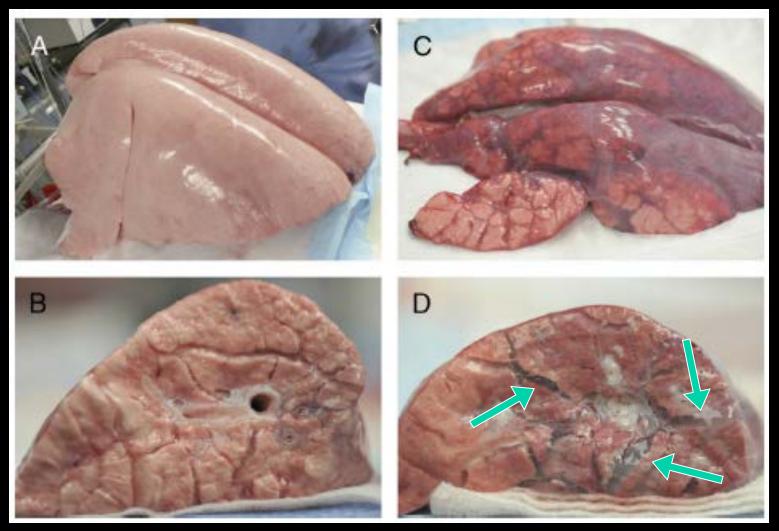
PaO₂/FiO₂ Ratio


Pressure/Time Profile (P/T_P)

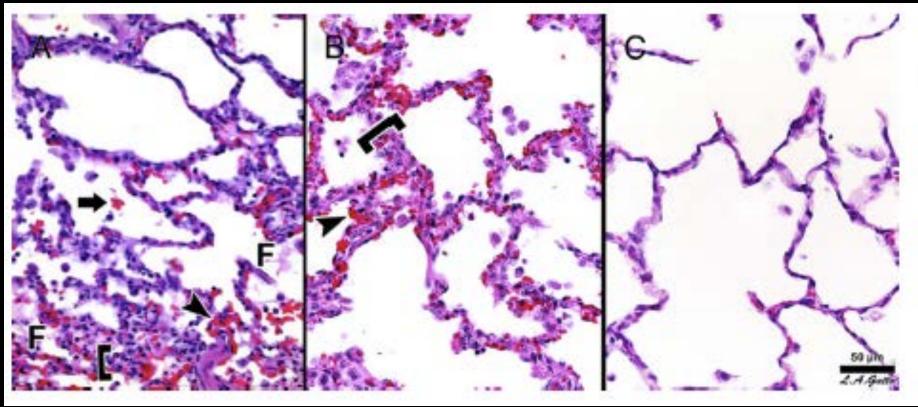
UNIVERSITY


UPSTATE MEDICAL UNIVERSITY

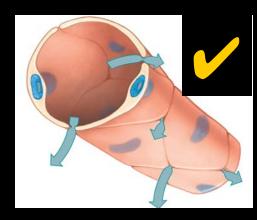
Molecular Protection

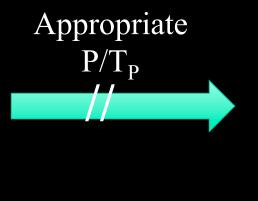

Pulmonary Edema

Gross Lung APRV ARDSnet

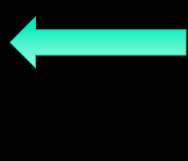


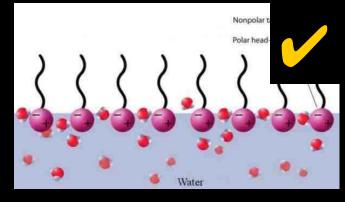
Histopathology


Sham


ARDSnet

APRV





Increased Capillary Permeability

Alveolar Edema

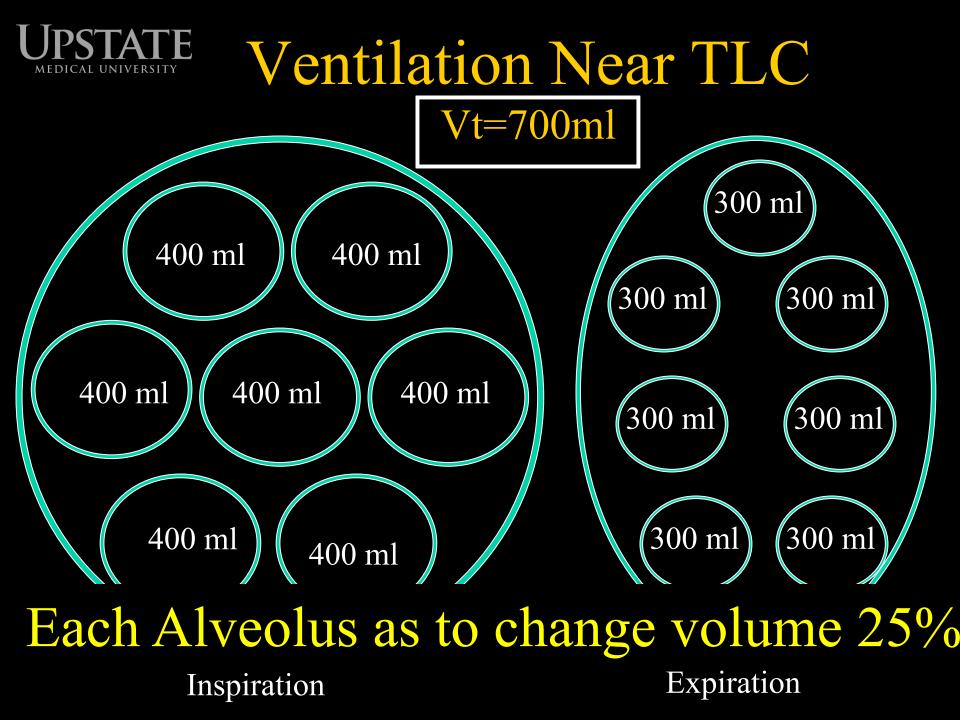
Surfactant Deactivation

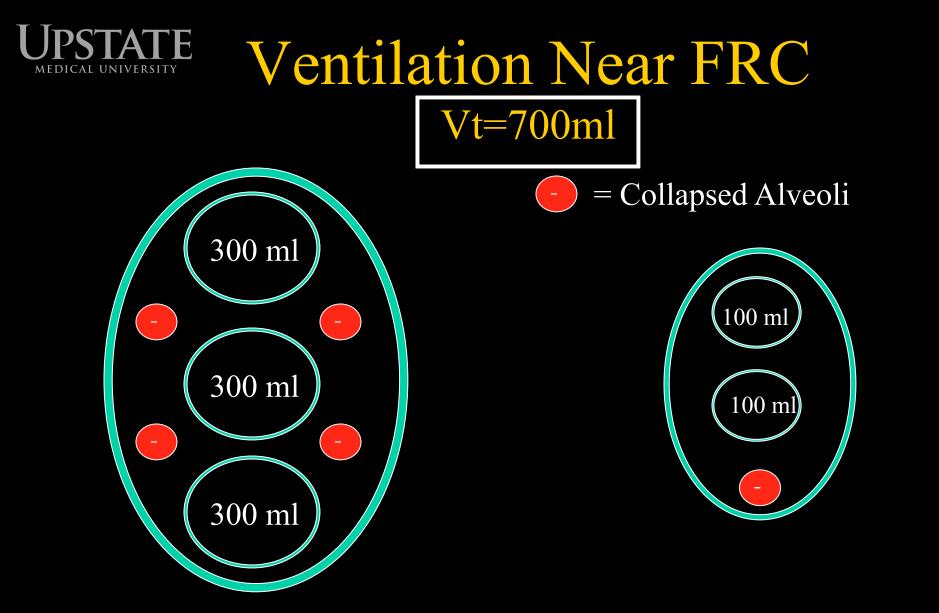
Alveolar Instability

End of Experiment Ventilator Settings

ARDSnet n=4

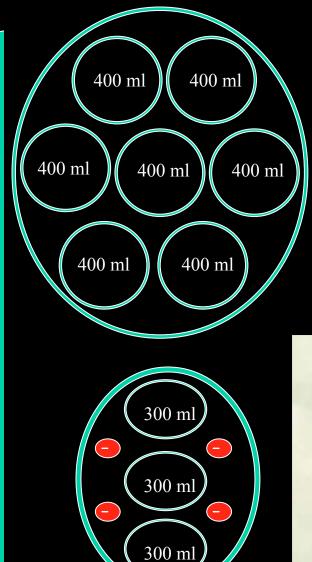
Tidal Volume/kg	5.77 ± 0.38
PEEP	20 ± 2.31
FiO2	0.73 ± 0.15


APRV n=4	
Tidal Volume/kg	11.98 ± 0.77
Thigh	5.30 ± 0.76
Tlow	$\boldsymbol{0.48\pm0.03}$
Phigh	31.00 ± 3.51
Plow	$0.0\pm\ 0.0$
FiO2	0.21 ± 0.0



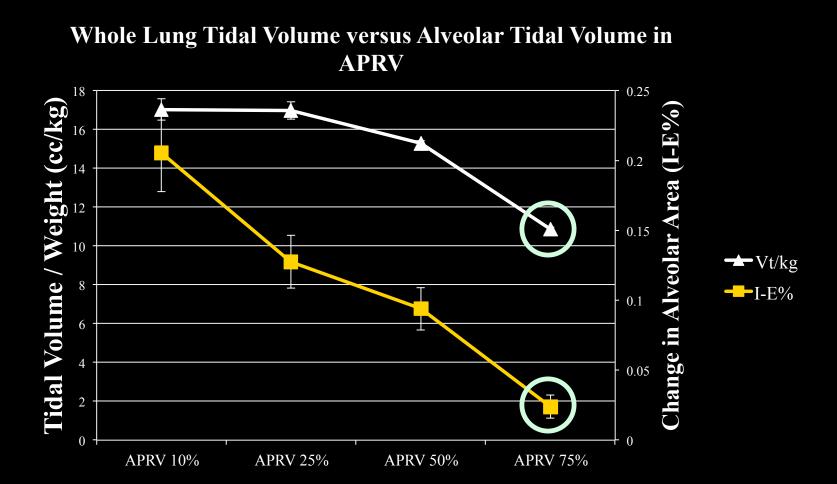
Micro-Anatomical Environment

- Tracheal Tidal Volume (tV_t)
 - $-V_t$ delivered by the ventilator to the trachea
- Alveolar Tidal Volume (aV_t)
 - The portion of tV_t delivered to each individual alveoli


• The critical physiologic factor in the development of VILI is not the size of tV_t , but how this tV_t impacts ΔaV_t

Two Alveoli change volume 66% and the other changes 100% Inspiration

Vt


700

Micro-Anatomical Environment

It is not just the absolute size of the tidal volume but rather the size of the tidal volume in relation to volume of the lung being ventilated

Take an Entirely New Approach

- Deconstruct the mechanical breath
 - Analyze all 10 components of the mechanical breath (pressures, flows, rates, volumes, *Times*)
 - -Mechanical Breath Profile (MB_P)

• Determine the impact of any given MB_P on the Micro-environment – the alveoli and alveolar ducts

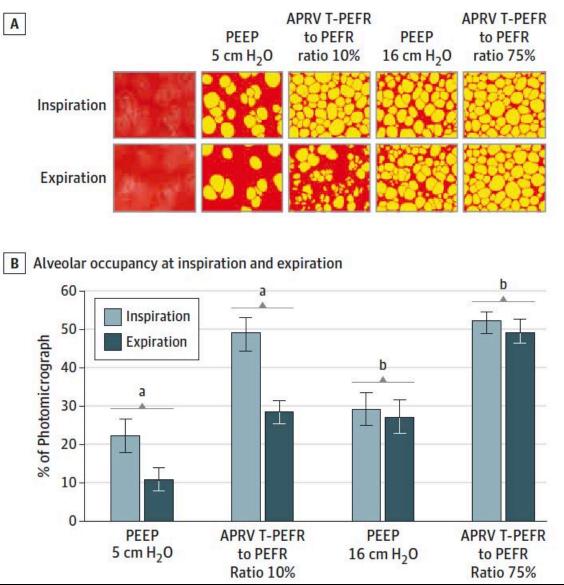
Impact of the MB_P

Micro-environment Alveoli and Alveolar Ducts

Research

Original Investigation | ASSOCIATION OF VA SURGEONS

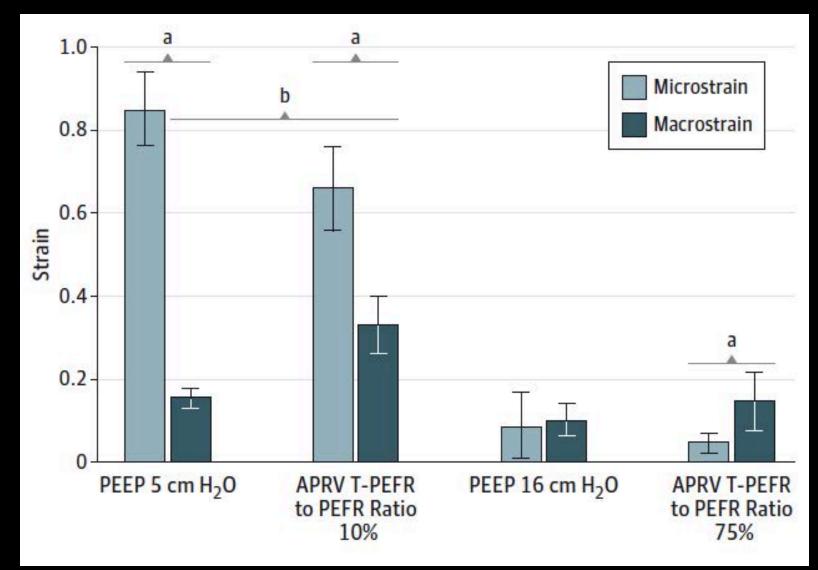
Mechanical Breath Profile of Airway Pressure Release Ventilation The Effect on Alveolar Recruitment and Microstrain in Acute Lung Injury


Michaela Kollisch-Singule, MD; Bryanna Emr, MD; Bradford Smith, PhD; Shreyas Roy, MD; Sumeet Jain, MD; Joshua Satalin, BS; Kathy Snyder; Penny Andrews, RN; Nader Habashi, MD; Jason Bates, PhD; William Marx, DO; Gary Nieman, BA; Louis A. Gatto, PhD

Kollish-Singule M, JAMA Surgery, In Press

Kollish-Singule M, JAMA Surgery, In Press

Dynamic Alveolar Strain during Ventilation


MEDICAL UNIVERSITY

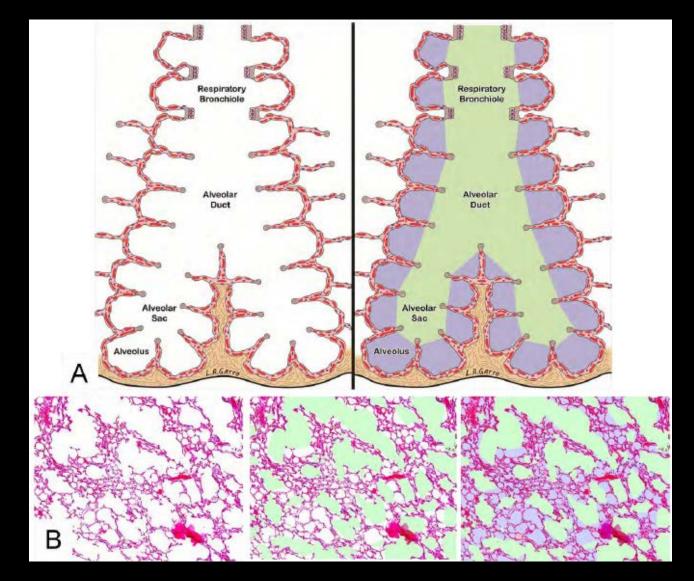
Kollish-Singule M, JAMA Surgery, In Press

Macro- vs Micro-Strain

Conclusions

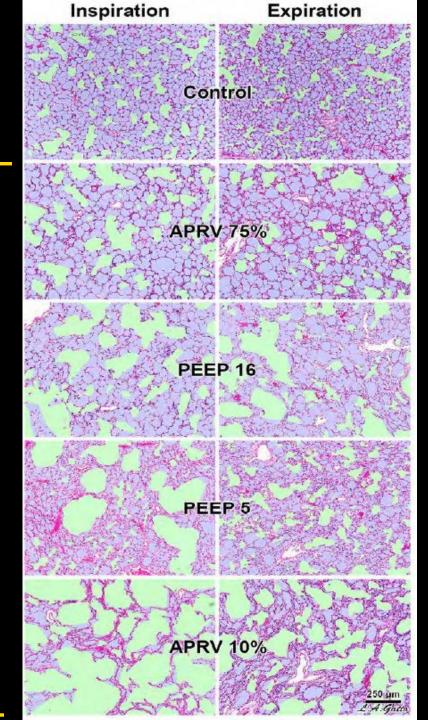
• APRV 75% both recruits and stabilizes alveoli, preventing collapse during expiration

• APRV 75% minimizes alveolar micro-strain



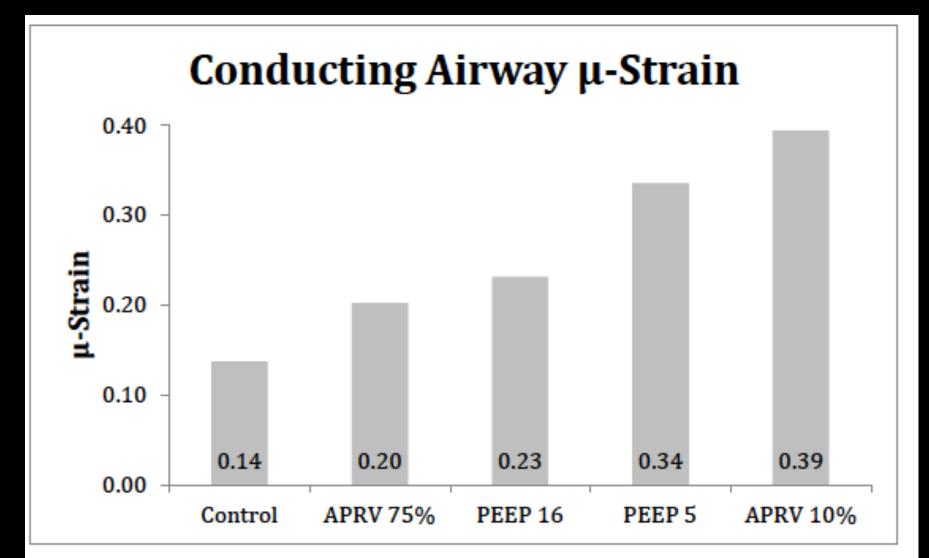
"Airway Pressure Release Ventilation (APRV) Reduces Conducting Airway micro-Strain in Lung Injury"

Kollish-Singule M, J Am College Surgeons, In Press



Schematic of the Terminal Airway

ARDS Lungs MV



Normal Lung - SB

Kollish-Singule M, J Am College Surgeons, In Press

Kollish-Singule M, JAm College Surgeons, In Press

Conclusions

- The volume of gas in the conducting airways (i.e. ducts) was increased in all lung injured groups.
 - This shift was minimized with APRV 75%
- The volume of gas in the alveoli was reduced in all lung injured groups
 - $-\,$ This shift was minimized with APRV 75%
- Conducting airway micro-strain was minimized with APRV 75%

Lecture Summary

- ARDS is a progressive disease similar to cancer
- Most ARDS develops in the hospital so there is a window of prevention
- Clinical studies have shown that preemptive application of low Vt ventilation to patients with normal lungs, but at high risk, reduces ARDS incidence
- Mechanical injury to the pulmonary parenchyma with inappropriately set mechanical ventilation is a key mechanism driving progressive acute lung injury

Lecture Summary

- In order to scientifically determine how to reduce the mechanical injury caused by MV we must know:
 - The pathologic impact of mechanical injury
 - What components in the mechanical breath (MB_P) are harmful or protective
 - How does any given MB_P impact the Terminal Airway
- We have found that the *Time* pressures and volumes are applied to the lung during each breath are critical for lung protection
- Multiple studies from our lab have shown that preemptive application of appropriately set APRV will block progressive lung damage and prevent ARDS in animals at very high risk

Conclusion

"ARDS is no longer a syndrome that must be treated, but is a syndrome that should be prevented."

Villar and Slutsky *Critical care*. 2010;14(1):120.

Can the Ventilator be used as a Drug to Prevent ARDS?

Preemptive Ventilation

Waiting for Established-ARDS

Therapeutic Use of Mechanical Ventilation: Can We Change the Way We Manage the Patient?

2014 Suncoast Pulmonary Symposium Hyatt Regency Coconut Point Resort Bonita Springs, Florida September 10-12, 2014

Gary F. Nieman

Associate Professor Department of Surgery Director, Cardiopulmonary and Critical Care Laboratory SUNY Upstate Medical University

> Syracuse, NY Niemang@upstate.edu

